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Outline
• Review last class

– One step methods for numerical solution of 
differential equations

– Local and global error
• Multistep methods with constant and 

variable step size
• Implicit methods using future time steps
• Extrapolation methods
• Review for Midterm
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Review Numerical Approach
• Solve initial value problem, dy/dx = f(x, 

y) (f a known function) with y(x0) = y0

– Use a finite difference grid: xi+1 – xi = h
– Replace derivative by finite-difference 

approximation: dy/dx  (yi+1 – yi) / (xi+1 – xi) 
= (yi+1 – yi) / h

– Derive a formula to compute favg the 
average value of f(x,y) between xi and xi+1

– Replace dy/dx = f(x,y) by (yi+1 – yi) / h = favg

– Repeatedly compute yi+1 = yi + h favg
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Review Notation and Order
• xi is independent variable

• yi is  numerical solution at x = xi

• fi is derivative found from xi yi: fi = f(xi, yi)

• y(xi) is the exact value of y at x = xi

• f(xi,y(xi)) is the exact derivative

• e1 = y(x1) – y1 = local truncation error

• Ej = y(xj) – yj is global truncation error

• If local error, e, is O(hn), then global 
error, E, is O(hn-1)
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Review Simple Methods

• Huen’s method

• Modified Euler method
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• Euler: yi+1 = yi + hifi = yi + hi f(xi, yi)
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Review 4th Order Runge-Kutta

• Uses four derivative evaluations per step
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Error versus Step Size for Simple ODE Solvers
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Implicit Methods Overview
• Methods discussed previously are 

called explicit
– Can find yn+1 in terms of values at n
– Use f values from estimated values of y 

between yn and yn+1 to get final yn+1

• Implicit methods use fn+1 in algorithm
• Usually require approximate solution
• Have better stability but require more 

work than explicit methods
• Trapezoid method is an example
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Derive Trapezoid Method I

• Get series for yn+1 and yn about yn+1/2
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• Subtract series to get yn+1 – yn

• Need expression for y’n+1/2
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Derive Trapezoid Method II
• Write series for y’n+1 and y’n about y’n+1/2, 

add them, and solve result for y’n+1/2
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• Substitute expression for y’n+1/2 into 
previous expression for yn+1 – yn
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Implicit Methods with Iteration

• How can we use fn+1 in algorithm to 
solve for the unknown yn+1?
– One approach is trial-and-error solution

– Euler step for first approximation of yn+1

– Iterate on implicit method
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Iteration Approach Example

• Use Newton-Raphson iteration for yn+1

– Solve g(y) = 0 by iteration: y(m+1) = y(m) –
g(y(m)) / g’(y(m)) 

– g(y(m)) = yn+1 – yn – hfn/2 – hf(xn+1,yn+1)/2

– g’(y(m)) = fn+1 – 0 – 0 – h(f/y)/2 
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f(x,y) Taylor Series Approach 
• Have to f(x,y) expand for both x and y
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• Substitute for fn+1 in trapezoid equation
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Trapezoid Method Result

• Solve equation below from last slide for 
yn+1 – yn
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Multistep Methods
• Previous methods used only information 

from most recent step (yn and fn)
• Took intermediate steps between xn and 

xn+1 to improve accuracy
• Multistep methods use information from 

previous steps for improved accuracy 
with less work than single step methods

• Need starting procedure that is a single 
step method
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Multistep Method Derivation
• Uses “interpolation” polynomial that 

passes through previous points
• Polynomial is integrated from xn to xn+1

• Resulting expression gives yn+1 in terms 
of values and derivatives of previous 
steps

• Leads to process known as predictor-
corrector with two expressions for yn+1
and an error control expression
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Adams-Bashforth-Moulton

• Predictor corrector method

• Predictor equation uses four points
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Adams-Bashforth-Moulton II

• Use difference between predictor and 
corrector results to get error estimate
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• Error estimate, EC, derivation on next 
three slides – result below
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Derive Error Equation (1/3)

• From an error analysis of the integrated 
interpolation polynomials we can find
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2. Subtract and add 
251y(v)(C)/720
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Derive Error Equation (2/3)

• In equation above ignore 

)(
720

270
)(

720

19

720

251 )(5)(5
11 C

v
C

vP
n

C
n yhyhyy  






  

 )()(
720

251
)(

720

19

720

251
0 )()(5)(5

11 C
v

P
v

C
vC

n
P
n yyhyhyy  






  

 )()( )()(
C

v
P

v yy  

• This allows calculation of truncation 
error term
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Derive Error Equation (3/3)
• The corrector term truncation error 

was given by the following equation

• Error estimate, EC, for step size control

• How to change h in multistep method?
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Step Size Control

• Establish emin and emax to achieve 
desired problem accuracy

• If emin ≤ EC ≤ emax, do not change h

• If EC < emin double step size, h

• If EC > emax half step size, h

• Carry extra steps to be ready for step-
size doubling

• Interpolate data if h is cut in half
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Grid halving if error too large

• Normal operation, no step size change

i-3       i-2         i-1          i          i+1 (old step)

●---------●---------●---------●---------●---------●

(new)  i-3         i-2         i-1          i           i+1

• Error too large: Half grid size and repeat step

i-3        i-2         i-1           i            i+1 (old step)

●----o----●----o----●----o----●----o----●

(repeated) i-3   i-2   i-1    i    i+1 

(interpolated points) 24

Grid doubling for very small error

• Normal operation, no step size change

i-5    i-4 i-3    i-2     i-1     i     i+1 (old step) 

o-----o-----o-----o-----o-----o-----o-----o

i-5    i-4 i-3    i-2   i-1      i      i+1 (new)

• Error very small: Double grid size

i-5    i-4 i-3    i-2     i-1     i      i+1 (old step) 

●-----o-----●-----o-----●-----o-----●-----------●

i-3           i-2             i-1             i              i+1  
(Retained to use for doubling)
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Grid Halving and Doubling

• Keep extra values fi-4 and fi-5 in memory to 
be ready for grid doubling
– fi-3,new = fi-5; fi-2,new = fi-3; fi-1,new = fi-1; fi,new = fi+1

• Grid halving requires interpolation for 
missing values in old grid
– fi-2,new = fi-1; fi,new = fi

 iiiiinewi ffffff 3514070285
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Use of Multistep Methods

• Many different equations possible with 
different orders and errors

• Used for high accuracy computation 
requirements with less computer time

• Used in high-accuracy MATLAB solver 
ode113 (variable step and order)

• Runge-Kutta type methods easier to 
apply, and can have error control for 
lower accuracy requirements
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Extrapolation Methods Basis

• Use infinite series truncation error 
dependence on h to get better estimate 
from results on two values of h
– Richardson extrapolation is example
– t = true result, n(h) = numerical result with 

step size, h; error = Ahm + Bhm+a + … so     
t = n(h) + Ahm + Bhm+a + …

– For step size h/2, t = n(h/2) + A(h/2)m + …
– Multiply equation for n(h/2) by 2m and 

subtract equation for n(h) from result
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Extrapolation Methods Basis II

• Continue process from previous chart
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Extrapolation Method Example

• Look at first order forward difference for 
the first derivative fi’ = (fi+1 – fi)/h +O(h2)
– Apply to f(x) = ex at x = 1

– Use h = 0.1 and h = 0.05

– fi’(h=.1) = (e1.1 – e1)/0.1 = 2.858842

– fi’(h=.05) = (e1.05 – e1)/0.1 = 2.78736

– Extrapolation [21(2.78736) – 2.858842] / 
(21 – 1) = 2.71593

– Error in three values is .14, .07 and .002
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Extrapolation Benefits

• In general the truncation error infinite 
series, written as Ahm + Bhm+a + … has 
a = 1 so truncation error gets one higher 
order for extrapolation

• Have greater improvement if a = 2 as it 
does in some cases
– Romberg integration is best example

• Can apply extrapolation to extrapolated 
results to reduce truncation error further
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Extrapolation for ODE Solution

• Basis is solution method known as 
midpoint method

• Construct large step, H, between two x 
values, x and x + H

• Subdivide H into n smaller steps, h = H/n 

• Compute intermediate approximations to 
y, called zm for the substeps

• Use central difference approximations 
wherever possible
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Extrapolation for ODE Solution II

• Start with results at x define z0 = y(x)

• Compute z1 = z0 + hf(x, z0)

• Central difference intermediate steps
– zm+1 = zm-1 + 2hf(x+mh,zm)   m = 1, 2, .. n-1

• Final value at x + H, called yn, is an 
average of the central difference value, 
zn, and a backward difference value zn-1

+ hf(x+H,zn)
– yn = [ zn + zn-1 + hf(x+H,zn) ] / 2
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Bulirsch-Stoer Method

• Three main ideas
– Use large step size H and compute results 

at x + H for several values of n then 
extrapolate results to h = 0

– Use midpoint method whose truncation 
error is Ahn + Bhn+2 + Chn+4 … to improve 
accuracy of interpolation process

– Use rational function approximation instead 
of simple polynomial interpolation for 
extrapolating to h = 0
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Rational Function Approximation

• Like polynomial interpolation except that 
the ratio of two polynomials is used

• Need n + m + 1 (xk, yk) data points to 
determine coefficients in polynomials

• Use process similar to divided-differ-
ence table to compute R(x) for one x
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Some Method Details

• Divide interval x to x + H into n = 2, 4, 6, 
8, 12, 16, 24, (nj = 2nj-2) substeps

• Use only last M (typically M = 7) steps 
in rational function interpolation

• Error estimate from rational function 
approximation used to stop substep
sequence if desired error is obtained

• Have strategy for increasing or 
decreasing large step size H
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Midterm Review I

• Differential equations with constant 
coefficients: dny/dxn + dn-1y/dxn-1 + … 
+ny = r(x): find 1…n as roots of equa-
tion ⋯ 0
– r(x) = 0 gives homogenous solution, yH = 

⋯
– Complex  pairs give sine/cosine terms 

– Repeated real  give (C1+C2x+C3x2+…)eλx

– For r(x) ≠ 0 y = yH + yP
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Midterm Review II

• For nonhomogeneous solutions find 
solution y = yH + yP

• To get particular solution, yP

– Write form for yP, based on form for r(x)

– Substitute postulated yP with unknown 
constant(s) into particular equation

– Equate coefficients of like terms to find 
unknown constants

– Use y = yH + yP to find constants from 
homogenous solution from boundary values 
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Midterm Review III

• Bessel’s Equation: 0

• Solutions for integer-n/non-integer- are 
/

• No questions on power series solutions or 
Frobenius method

• Use of Laplace transforms to solve 
differential equations
– Use of partial fractions for inverse transforms

38
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Midterm Exam

• Open book and notes, including 
homework solutions

• Make your own notes to use for exam
– You are in trouble if you have to use the 

book on an open-book exam

• May be useful to have integral tables

• More credit given for showing how to 
obtain solution than for providing final 
details of algebra or arithmetic


